Journaux liées à cette note :

CoreOS de 2013 à 2018 #CoreOS, #linux, #distribution-linux

Cette note fait partie de la série de notes : "J'ai étudié et testé CoreOS et je suis tombé dans un rabbit hole 🙈".

Note précédente : "Système de mise à jour d'Android, Chrome OS, MacOS et MS Windows".


Première version de CoreOS Container Linux en 2013

La première version de CoreOS Container Linux sortie en 2013 utilisé la méthode A/B (seamless) system updates inspirée de manière transparente à Chrome OS :

Upgrading CoreOS is a bit different than the usual distros. Our update system is based on ChromeOS. The big difference is that we have two root partitions; lets call them root A and root B. Initially your system is booted into the root A partition and CoreOS begins talking to the update service to find out about new updates. If there is an update available it is downloaded and installed to root B.

source

D'après ce repository coreos/coreos-overlay, CoreOS Container Linux était basé sur les packages de Gentoo.


Première version d'Ignition en 2016

En avril 2016, l'équipe CoreOS a publié la première version de ignition, outil toujours utilisé en 2025 par Fedora CoreOS.

Ignition is a utility created to manipulate disks during the initramfs. This includes partitioning disks, formatting partitions, writing files (regular files, systemd units, etc.), and configuring users. On first boot, Ignition reads its configuration from a source of truth (remote URL, network metadata service, hypervisor bridge, etc.) and applies the configuration.

source

ignition est un système qui ressemble à cloud-init, mais qui est exécuté seulement une seule fois, lors du premier boot et est lancé en tout premier, avant même systemd.

Depuis 2019, les fichiers json ignition ne sont plus édités manuellement grâce à l'outil butane qui convertit des fichiers YAML butane en fichiers json ignition.

Voici la documentation de butane qui vous permet de voir les actions que peut effectuer ignition : https://coreos.github.io/butane/specs/.

À la différence de cloud-init, ignition fonctionne à un niveau plus bas. La spec Butane Fedora CoreOS v1.6.0 permet par exemple de configurer les partitions, le Raid, LUKS encryption

Voici dans mon playground un exemple de son utilisation : atomic-os-playground/create-coreos-custom-iso.sh.


Note suivante : "2014-2018 approche alternative avec Atomic Project".

Système de mise à jour d'Android, Chrome OS, MacOS et MS Windows #MacOS, #CoreOS, #linux, #windows, #distribution-linux

Cette note fait partie de la série de notes : "J'ai étudié et testé CoreOS et je suis tombé dans un rabbit hole 🙈".

Note précédente : "Ajout de packages dans des distributions atomiques".


Chrome OS et Android implémentent la stratégie de double partition A/B (seamless) system updates.
Cette technologie offre des mises à jour complètement transparentes en arrière-plan et un redémarrage immédiat.
En revanche, contrairement à la solution CoreOS (méthode détaillée dans cette note), cette méthode a pour inconvénient de consommer deux fois plus d'espace de stockage.

MacOS s'appuie sur les snapshots de son filesystem APFS (fonctionnalité qu'offre aussi btrfs). Cela garantit un retour en arrière rapide vers la version antérieure si des problèmes surviennent.
En revanche, l'upgrade se termine durant le reboot, pouvant prendre de 2 à 5 minutes, alors que le redémarrage reste instantané avec Chrome OS, Android, CoreOS ou Fedora Silverblue.

Comme d'habitude, je n'arrive pas à trouver des informations précises sur le fonctionnement interne de MS Windows 😔. D'après Claude Sonnet 4, le système de mise à jour de Windows 10 et Windows 11, baptisé Unified Update Platform (UUP), semble plutôt daté : pas d'A/B (seamless) system updates, absence d'atomicité, installation longue lors du reboot (10 à 30 minutes), possibilité d'échec en cours de processus, rollback complexe, aucun système de snapshot comparable à MacOS. J'ai du mal à croire ce bilan tellement catastrophique, ce qui m'amène à questionner sur l'exactitude des informations rapportées par Claude Sonnet 4.

D'après cette documentation particulièrement riche et mes recherches complémentaires, je pense que la stack libostree + composefs (avec zstd:chunked ) tel qu'implémenté dans Fedora CoreOS est probablement la technologie de mise à jour la plus avancée actuellement disponible.

Avant de présenter le fonctionnement du système de mise à jour de Fedora CoreOS en 2025, je vais retracer l'évolution technique de cette solution.


Note suivante : "CoreOS de 2013 à 2018".